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ABSTRACT

The contribution of electron exchange to intermolecular
potentigls is studied using the operator form of perturbation theory,
when the non-interacting system of atoms or molecules is degenerate.
A general, symmetry adapted degenerate perturbation theory is
developed, including the almost-degeneracy case. Perturbation
expansions are given up to second order in the energy. Differential
equations for the perturbed wavefunctions are obtained, as well as

their associated variational principles.
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I. Introduction

When dealing with the interaction of atoms or molecules, for
example in collision processes or inside crystals, the wavefunctions
and energies for the non interacting system are sometimes accurately
known, in which case it is convenient to use perturbation theory to
obtain the corrections due to the interaction. Furthermore, the
new wavefunctions are required to have a symmetry corresponding to
an irreducible representations of the group of the full hamiltonian.
This symmetry is usually imposed by applying a group theoretical
projection operator A , for the appropriate representation, to the
set of unperturbed states. But a set of linearly independent
unperturbed wavefunctions may become linearly dependent after being
projected, so that the development of a perturbation theory in
terms of the eigenstates for the non interacting system requires
special attention.

This problem is present in the perturbation theory of inter-
molecular potentials in the intermediate range between long distances,
where a multipole expansion is used and exchange effects neglected,
and short distances, where chemical binding is found and the exchange
effects predominate. Here the operator A antisymmetrizes the
total wavefunction with respect to electron exchange.

The perturbation theory of intermolecular potentials including
exchange was initiated by Eisenschitz and London1 and continued

since then by several authorsz-S. The use of linearly dependent basis



sets has led sometimes to inconsistencies in the literature, which

-12 by using linearly independent,

have been avoided more recently9
usually orthonormalized, sets.

. 13,14 .

Another fruitful approach has been baged on operator

2,16 which helps to isolate the difficulties derived

perturbation theory}
from the symmetry problemly. In this contribution we want to use the
operator approach to study the problem when the non interacting system
is degenerate. TFor example, degeneracy will exist if the non
interacting atoms or molecules have orbital degeneracy or their

spins coupled to a multiplicity smaller than the highest. We shall
keep these examples in mind but develop the formalism in general.

In section I1 we give the basic equations for symmetry adapted,
degenerate perturbation theory and consider also the almost-
degeneracy case., Section III includes the perturbation expansions
when the degeneracy is ccmpletely removed in first order and when
it persists to first order and is removed to second order. Section IV
gives the corresponding differential equations and discusses their

associated variational principles.

II. Symmetry adapted, degenerate perturbation theory

Let us consider a system of atoms or molecules whose energy EO

in the absence of intetactions is g times degenerate, with the
unperturbed states given b { . } LS . his set

p g y q%h ) 8"; L >4 This set
of linearly independent, non-symmetrized wavefunctions will form,

together with the set of excited states {(fk} , k>g , which



verifies <:C{h.lcP0;:7::() , a complete basis to describe the
non-interacting system.

We want to obtain a perturbative solution for the interacting
system in terms of this complete basis, including the symmetry
properties of the whole system. Indicating with A the group
theoretical projection operator which selects the wavefunction
components belonging to the irreducible representation of interest,
it will in general be a product of a point group projection operator
times the antisymmetry projection operator. The set of symmetry
adapted states {‘ACPOL} is not necessarily linearly independent
and could lead to ill behaved expansions. In order to avoid this
difficulty we introduce the g x g overlap matrix (or Gram's

matrix) A for the set,
~r

é = [ <CPO(.\A l q)oz>:| ] L

which is hermitian, and diagonalize it by means of the unitary

transformation § to obtain the diagonal matrix « ,
~S ~v
stAs =« 2)
~ o~ 2 ~

The eigenvalues QQ of A are definite positive, i.e. QQ ?—C))
~/ .
and we indicate the corresponding eigenvectors, the i-th columns

of El, by ;§i , so that

AS =2 (3)

~ A




Selecting the h < g eigenvectors with eigenvalues different from

zero we form the states
|
— 9—§ 2

where h>p2>1 and (Po is a row matrix with elements (Poi,

~J
These states form a set of symmetry adapted, linearly independent
wavefunctions describing the non-interacting system of atoms or

molecules. In effect, clearly A@;le_e;F , and

|
_ 3 X
<@;F @oﬁ>"(°gfa°(1)24z SA’D Saq <Cﬁ>i \34 | q)oa' >

d
(o, 2 (ST -4 )
“(yp“ci) (STA 5)151: Mﬁ(wfo«j) 2=5m

so that they are orthonormalized. Notice that this result is
obtained without imposing the orthonormality of the set §}¥%ik
We shall use the previous results to set up the eigenvalue
problem using the wave and reaction operator formalism16, indicating
with capital greek letters the symmetrized states, and introducing

the projection operators

G- RP%XQ;P‘ > (D=Z1§ @16 ) (6)




i

and
@:ﬁ_m ° (79

In ‘Schrgdinger equation C H— E)@':O ) <Y \-L.-Q.> =4 )
we have AZE—:@— and L_H)_ﬂ 1=0 , sc that only the
projection widn.ﬁ will give a right hand side different from zero

and we can write, in the usual way,

OH-E)OW + OH-EYPTw =0 (8.a)

J

PH-E) oW +P H-E)PYW=0

(8.b)
From (8.b) we obtain

T THOW |, T=F[x0-$)+p0+F E-HIPTP
@)
where o/ and /3) insure that T 1is well defined and dec not

affect the results, and replacing (9) in (8.a),

OCH-E)WOW =0 W=0+TH . (10}

5

Introducing the notation

O¥= % (-P;f, L[> = ZF Cfffo% (11)



and projecting the first Eq. (10) on , we obtain the
. q ov/

secular equation

2 , A
: (<%, (HWITLg > - B b YCqp=0, D

discussed in detail by Lowdin for fl = 1 . Here the index h3>q3>1

numbers the energies that split from EO due to the interaction,

and we have used the result <Q—°P/‘wlz£°|°>=<q?°‘>lKO(Q"P>=SFI?

Once the coefficients c4f> are known the states EE%- corresponding

to E are obtained from (9),

%

I_L)%: (D‘Ee% +?Q—1= Z‘; C'c”) ('f+T‘H >’Q-E—OP . (13)

Equations (12) and (13) may be rewritten explicitly in terms of the

unsymmetrized states

Q ‘
1le§> Z 3 “p CPDL e

using the decomposition H = HO + V , to obtain the secular

determinant

et [<o (VA oo + <P VTV > — (B E‘j’)gF,F}o
(5)




For i =p =1 we put (.F(M:CPO )0(4=<('Pcl_ﬂ‘cpc>)
and re-obtain Van der Avoird's result for the non-degenerate case.
For h =g, i.e., when the set {ﬂ CPN;} is linearly independent,
the full S unitary transformation appears in (15), which can then

be eliminated to obtain, in matrix notation,

det [ <@, |VA(0, S+ <(P°lVTVlLPO>—(Eﬁ- E9)A ]=0
~ ~ ~ ~ ~ (16)

‘If the matrix elements of second and higher order in V are neglected

in (16) we are left with the valence bond secular equation usually

obtained when the interacting system wavefunction is written as a

projected linear combination of Slater determinants constructed from
. . 18

the products (Poi of isolated atom wavefunctions

It is seen from eq. (12) that we can always choose

Zf“ q'p %._N,igaI (17)

and using (13) )
N S
B (> =Ny Sgq+ 2 © “D. ﬁP<t)f%llVT2V > )

Equation (12) together with <-42—c‘ r(ka[>=i will then determine

the coefficients C‘.Hb ) { 21;, >A , uniquely or alternatively,
choosing N will determine the norm of gﬁ‘, . It is also seen
from Eq. (18) that for fixed ¢ values the states & are

4 ¥



orthogonal within an error of second order in V . 1In the following

section we shall find it convenient to use the condition

Co)‘¥
C c, =1 (19)
P ogp dp
(©) .
where the £ are obtained from the lowest order solution of

ir

Eq. (12).

In some cases the unperturbed state of interest will not be
degenerate, but its energy will be close to other unper turbed energy
levels, their difference being small compared with the magnitude of
the interaction. This situation may arise when dealing, for example,
with spin-orbit effects. These almost degenerate cases can be
treated in the way described abovel? Let us indicate with E§Q)and
(POL )% >0 24 , the closely spaced energies and their wave-
functions and let CFk , k>»g , indicate the other unperturbed
states. We introduce the operator A defined by

A= % A 1, X Py |

(20a)

. =) (o) ®
A&’"% 3 Eg ) - =E “Ec(-’) (20b)

Av

and write

H = H°+V =(HO+A>+ CV—A) :I“t—o“('_\—/_ . (21)




We find then that

qc> Ceoi, = :E'(,?v— cPoi, ) j = 4 =>4 (22)

so that Es:\))_ is g times degenerate and {C?oi} is a g-order
degenerate set. The previous and following results may then be
applied to these problems by simply replacing EO ., H, and V

0

by E;;} s TI‘O and V respectively.

IIT. Perturbation expansion in the operator formalism

To obtain the eigenfunction j% and eigenvalue E of the

% %

interacting system of atoms or molecules to increasing order in the
potential V , we require a perturbation expansion for T . This

we shall do, following Van der Avoird's treatmentM, by noticing that

?(E—H):(E(;’_Ho)jq -~ A V'4 (1)

where AN is a normal, idempotent operator defined by

N =1~ Zﬁ \I-E—oFxlzyoﬁl ) (2)

which verifies ?: _A._A:— ﬂA—t- , and where

{
Vies Vo(E-E® ). 3
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From (1) and the defining equation for T ,

P E-H)T= (EQ-HIT-AVT=FP.

Introducing the unsymmetrized resolvent operator
—1
r{? - Z E(O)__ ©)
° lz>g< S R (% ©)
satisfying

PR(ED-HHIP=T (6)
and operating with FRe to the left of (4), we get
T oPRP + PR ANT )
Using the relation

PRAV'PRP - PRPVATRP ®)

and iterating in Eq. (7) it is found that, provided the iteration

expansion converges, T = T+ . The hermitian character of T may be
explicitly shown by replacing T in the right hand side of (7) by

T+ , so that

T=TRP + PRAAV'PRP + PR AV TVATRP

=PRPL PR A L (VA+AVOATRP + PRAV TVIATRP
@)
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In this form T may be expanded as a sum of hermitian terms, which
may be obtained in the basis set of unsymmetrized states for the
non-interacting system.

To calculate ?E% and Efﬂ we must solve by iteration the

equations
ZF [<d, WA + <, VTV \‘K(P—CE{E?)%’FJ%FO
(~1C)a;>

and

KP(_E’ TVZ c Flb’ Tvcef" (10b)

The procedure to follow will depend on the degeneracy being completely
or partially removed, or persistent in first order, or second order,

etc. We shall only consider two cases:

I. The degeneracy is completely removed in first order.
II. It is persistent to first order but completely removed to second

order.

Other cases may be dealt with in similar ways.

We start with case I. To first order we get from Eq. (10a)

% (<Z’f VA “lgf> (4)515/ )c __: (11)

i
which gives h different eigenenergies E “ and, choosing
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(°)'¥CC°) S
P el 4pT 94

(12)

) [o) Cb) ,LP»
the unsymmetrized states and
Ty = 1» qp Top

1§3r0ﬂ ,_jﬂ (©) . Replacing () in (10b) we get
+ Tq Ceq,

(JD(_L’;‘(\ Pr ’?VC{“) (13)

and using
Fugy = AaTve) =4 (V-9 eq v

the result is

?lfm PR A (V- E(‘))Cf@ (15)

W)
To obtain the coefficients £ required in QD?§?41) , as

4t 4

well as the second order energy fEéF , we proceed to the second

order approximation for (10a), given by

<Y, Q) > B (t) 0
o 1V P>+ r(<1{{>ﬁ,l\/ﬂ W>—Egsp) <

@) (o)
T3 Gp=° i)




Multiplying by < * , summing over p' and using Eq. (l1) and
q'p/
(13),

< ()(\/?Q Pv| > + CE“,)_‘() S pl)¥ p M
Ty REE B T

E(z) S o)
so that for a} ;—3r 3

- <(f¢ k\/ —-(()>ij §\<V"’ (l)blL{)('\> (18)

()

To find £ we write

() (0) (l) (O)
Ta=7 41‘ g o 43" R

and replacing the second expression in Eq. (17) we get, for ﬁ/’:ﬁf‘, )

?fﬁ .—(Em Em) <C("°)l£v EQARA (V- E‘”)léf“"

LQo)
. : a , ey >
which together with h/ q’=() , resulting from Z C‘_Hb
C() ) Q)
=0 define (9-9'3’ = . We also
“ep=C . 6 = H9q

obtain from Eq. (10b),

13
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?Ygr‘” PRV ce‘”

+ PR AL [(V- E‘;J:);M A CV—E(E;))]A‘_QDJQ (V-E 2’) [()3
(24)

This procedure may be continued to obtain higher order results. For

example, the third order energy will be given by

(3) (o)
BY = <PIV-E AR,

x A g LO-EDA A V- ED TATRA -5

Z 0 m (o) Q) =) () |2
LF ) \<C{>ﬂ(<v “EDIAR A (V-EG) 160>
(22)

In case II we would get, from the solution of equation (1l1),
() 8 (o)
E Eﬂ—' , for h = i )1' >4 , and the Tq’ states

would be yet undetermined up to an unitary transformation. We gc

then to the second order approximation to Eq. (10a) and write

(010)

( t[ff,, VPR, ’f\/ldg> E‘g‘:” )R

P

> -—-(() 2
+1BC<QT lVﬂ\t{F(Q % f’f’) ” — o ()




Putting

eV 5 4© o (24)
a9 49" e )
o ‘ () ¥ . : .
multiplying Eq. (23) by £ , and summing over p' we obtain,

¢

after using Eq. (1l1),

(°) 0) ( 2 -
Z ( <Cf VPR "Pvltfgf(" 1:_; )Sﬁ!g(v gﬁu =0 (25)
which gives us h different second order energies E(fuﬁ))

(W°) 0 (o) o 3
To =24 % = 3 tae 9y -

(6,0) o ’ B
and Zif— = :ﬂ Cf(% ) . We also obtain from Eq. (10b),

9

?@E’;:’n = PRPV Cf (50) (27)

and Efoﬁ)

3

in case I, and so on.

1)

To find L we would go to the next order, as done

This completes our discussion of the perturbative solutions.

To compute second order energies we would need to perform sums over

the excited states of HO , included in R When dealing with

0
corrections to ground state energies, it will be useful in some

.. 16
cases to use the inequality
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(o) () = .
O>Re>(ED- gﬂ)ig“\ﬂx%‘ (28)

from which the following bounds are obtained for E§(2A

4‘ )

. 3
0> 'L > (EU-EL 9P ((W-EA Z X Rl
1={

x A cv-Eg‘,(’) lcfg”> ) C29)

"
The Unsold approximation may be considered as an interpolation

between these two bounds.

IV. Differential Equations and Variational Principles.

In connection with practical applications, it is frequently
useful to work with the differential equations for each perturbation
. . o s 20
order and their associatedvariational principles
To obtain a differential equation we shall look for a wavefunction

:k; belonging to the total (unsymmetrized) space, such that
Pw=-PYL . (1)

From the relation

T=T®LTE YT .0)
2.a

TO=D Lt (1-4)4p0 +P (EL-H)PTP

(2.b)
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and (III.10b) we get, introducing @ =4—7

(0) oW
%f}"‘T VC€3(+T vﬁr?%%"‘—@%?r ) (3)

and operating to the .1eft with P CE(S)—HO) J)
P (V- - Pv Pyt )
(Eq Ho)%j_ (f)f],+ 3 %ff— ‘

Rather than working with this equation we may try to solve the

"related" equation
(EQ - o) Kg <2V, +F Vg'rA+ %jr )

and, since this q-// would also solve Eq. (4), we can write

(?t_\{' 2?9( . The normalization condition for QZ" requires
that <%q- l? (’)(4’> be finite. Otherwise we are free to

choose, to solve Eq. (5), the boundary condition <CPO& l %$> O

3 2,& > 4 . It is then seen that the formal solution

954 =RPVY, + @;?v,!rzfrj(gr

(¢
= (A- PJP\/;( ATy'p Py CPjr )

gives, after expanding and rearranging terms, a solution for i}>§£§?
identical to the one obtained in Section III. Equation (5) together

with the adjoint related equation



(B9 H UL PV @, + AV PY > Q)
may be obtained from the variation function

LK H5 =<9l 455 (<Hs PV I9y>

r~ ~Sa (o N
+ <c{>ﬁr\v?(3c,“>--<gé5f (ED)—HDI?\/QFA Wi>>)
&
were Qo (§y 5= <qu K> a2,

and the variational principle
ST /5N e = ST, /SN = 9
4/ 5Wg = 233 /5K =0

' a . .
It is seen from Eq. (8) that in order to get Ck%% and ;k;% it is
necessary to solve first the secular equation (I11.10a), to obtain

E . and . This may be done using again a perturbation

'1' CPSF Q) (0)

treatment. Once & and
AN

Q)
Eq. (III.11) one would obtain 5% from the first order

are known from the solution of

approximation to Eq. (5),

(E‘Z‘—Ho)oli)=?\/cf>‘;’ (10)

for case I of the previous section. A variational expression for

(© 5
?é may also be found expanding J, = > J () and

1 m=0o %

18




0 ' '
noticing that :ré;>:: 3’5— =0 . Since Eq. (10) does not

1 a )
include the non-hermitian operator fojf , it will be ﬂif) }f

2
and J—(j') may be written

T L0 = <P IPVIGY> 4 <90 WP ITY

<97;‘:\Eé°’— Ho L 4>

(44)

o)
where we have used CfL (CP(g >:z A . Equation (11) is a
1 *
symmetry adapted Hylleraas variational princip1e2~a Variational

principles for higher orders and for case II may be discussed along

* Putting ?C(n yi(” S 9('0) in this equation it is
@) (2) ) &/

found that 3‘ 7/ () E
4 [: g1 > fxf J=%14 ,

N (2)
so that GOleads to a mlnlmum var1at10na1 problem for

= T@r 4y a jr
g =¥

the same lines

Variational principles of the Hylleraas type, like Eq. (11),
are useful provided the solution to the zeroth order problem is
accurately known. When this is not so it will be usually more
convenient to use the full variational principle. It is also seen
that charge transfer effects may be studied by incorporating in E;q.(44)
the corresponding charge transfer states. Nevertheless, that may

complicate the computation of the last term in Eq. (11), making

19




again more convenient to use the full variational principle. The
best computational method to follow should be chosen in accordance

with each particular problem.

V. Discussion

In the previous treatment we have assumed that the solution for
the non-interacting system of atoms or molecules is accurately known.
This will certainly be the case when dealing with interacting
hydrogen atoms. The equations obtained for the energies and wave-
functions may be used to describe a pair of hydrogen atoms in a
symmetry state corresponding to excited, i.e. orbitally degenerate,
non-interacting hydrogens, or to describe more than two hydrogen
atoms in a state with multiplicity smaller than the highest. For
other atoms the usefulness of the perturbation approach with depend
on the accuracy of the unperturbed states.

As it is usually the case with perturbation theoretical
treatments, we have assumed that the iteration solution of the
equations converges, in which case the energy has been shown to be
real to all orders. With respect to the meaning of "order'" in
symmetrized perturbation theory it may be useful to take into
account that the zero order problem is recovered by taking \/-€>(j

and fi*% 4_ . For example, when dealing with Eq. (IV.5) we can write
Pviat. Poedat Py ) AT
=P (M- ) P-4y 4 PVP

20
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where in the right hand side we apparently have a zeroth order term.
Nevertheless, for 349/.'.. the operator KP commutes with HQ~E(§)
and the term disappears in the unperturbed problem. Consequently,
the whole expression must be considered as a first order one.

From the knowledge of §£§i accurate to a certain order it is
possible to compute expectation values of properties of the inter-
acting system to the same order. The applicability of Dalgarno's
interchange theorem for expectation values is restricted as in
unsymmetrized degenerate perturbation theoryzo. This restriction

might have been expected, since our results reduce to those of

unsymmetrized degenerate perturbation theory for'j4== 1 .
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